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Abstract 

The presence of mineral impurities in acrylic fibers leads to disruption of its structure, additional defectiveness during thermal 
treatment, reduction of characteristics of carbon fiber produced from it [1,2].  In this paper the issue of acrylic fiber thermal 
treatment regime optimization involving computer modeling with allowance for density growth kinetics descriptive models and 
weight loss models, exo-effect and equipment characteristic. The findings are consistent with the data in [3] and confirm the thermal 
activation capability of thermal stabilization process.   
 
© 2019 The Authors. Published by Elsevier B.V.   
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 9th Annual International Conference on Biologically Inspired 
Cognitive Architectures. 
 
Keywords: PAN- fiber precursor, thermal stabilization, heterogeneous process, quasi-homogeneous process, thermal activation, multi-stage 
process, process optimization, kinetics models, mathematic modeling, optimal temperature regime. 

1. Preface.  

 The presence of mineral impurities in acrylic fiber in the process of thermal treatment in carbon fiber production 
leads to the beginning and growth of chemical processes in individual local points of fiber cross-section, which leads 
to increase of process non-homogeneity by cross-section and degradation of produced carbon fiber parameters [1,2]. 
In [3,4], it is shown on the basis of influence analysis of impurities mechanisms and initial temperature of acrylic 
fiber thermal treatment, that it is possible to reduce the impurities influence through the thermal process activation 
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by lifting the process on a maximum possible temperature during the early stage, starting the process in maximum 
possible number of points by cross-section, and to decrease the temperature upon active exoeffect occurrence for 
conducting the process without thermal stress for acrylic fiber.  For implementation of this approach it is necessary 
to solve the optimization problem of selecting maximum possible treatment temperature in the first area of the 
process with obtaining the given density on thermostabilisation output and limiting the amount of generated heat 
because of the exoeffect with thermostabilisation furnace standard means. This paper analyzes the possibility of 
coordination of these mechanisms of the process and of thermal activation implementation with the method of 
mathematical modelling on the basis of formal models of density growth kinetics during acryl fiber thermal 
treatment, mass loss, heat generation with exoeffect. 

2. Statement of the PAN-fiber thermal treatment optimization problem.  

The process of consecutive acrylic fibers treatment in areas of thermostabilisation oxidation furnace is considered 
as multi-stage (fig. 1) [5,6]. 

Every pass of the furnace treatment is a distinct stage and is described with kinetics equations of zero and first 

order by density [7-12]: 
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 (2) 
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 (6) 
 

autocatalytic kinetics equations with nucleation of mass loss mechanisms: 
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Fig 1.  Multistage thermostabilisation process 
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Fig 1.  Multistage thermostabilisation process 
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equations of exoeffect heat flow for two mechanisms of mass loss processes: 

 (11) 

where  - density change, formal equations kinetics constants of zero and first order, 

- steady-state density, process activation time for the current process temperature, 

 - mass loss by the first and second mechanisms, 
- exoeffect heat flow. 

These equations link the output parameters of the stage  with the output parameters of the previous stage  

and control inputs on the stage . Output parameters of the stages are acrylic fiber density, amount of heat emitted 
because of exoeffect, control inputs - fiber pass rate, defining the duration of the chemical process on every stage, and 
thermal treatment temperature. 

Object state variables and control inputs have restrictions, defining possible variation range for them (maximum 
velocity of rollers and others). Fiber density on the last stage output must be established on set value, and exoeffect 
heat flow on every stage should not exceed the set value, which is equal to heat flow, that can be evacuated with the 
furnace fan system. 

Obtaining of maximum oxidation uniformity by fiber cross-section corresponds to the maximum possible 
temperature value, which corresponds to the maximum fiber pass rate on input rollers. This allows to use as the 
criterion maximum input rollers velocity with equality of output density to the set value and exoeffect heat flows with 
furnace fan areas feasibility to evacuate the flow.  
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is increased by outer loop and again each area is brought 
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algorithm selects by mathematical model the most effective fiber treatment regime with set parameters. 
 

4. Results of PAN-fiber thermal treatment optimization.  
 
Fig. 2 shows treatment temperature and density charts by areas with typical temperature regime. Fig. 3 shows 

treatment temperature and acrylic fiber density variation charts, found with the algorithm. For considered acrylic fiber, 
temperature in the first area may be increased up to 236 degrees without exceeding allowed exoeffect heat flow. At 
the same time, unlike with typical regime, when density starts to grow on last passes of the first area, it happens on 
first passes of the first area, when regime, selected with the algorithm, is applied. At the same time, thermostabilisation 
process duration becomes 1.5 times shorter. 

 
Summary: 
 

1. Optimal thermostabilisation temperature regime, corresponding to the regime with thermal activation [3,4], is 
obtained with mathematical modeling. 

2. Obtained temperature regime provides maximum possible treatment temperature, which contributes to process 
starting in maximum possible number of points by precursor volume, i.e. to achieving of maximum possible process 
uniformity without exceeding allowed exoeffect heat flow. 

3. Treatment with maximum possible temperature also corresponds to maximum performance of a production line. 
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